Nitrogen in Minnesota Rivers

Conditions · Sources · Trends · Reductions

- Minnesota Pollution Control Agency
 David Wall, Steve Weiss, Dennis Wasley,
 Thomas Pearson, David Christopherson,
 Bruce Henningsgaard, Nick Gervino, Pat Baskfield
 - University of Minnesota
 David Mulla, William Lazarus, Karina Fabrizzi, Jacob
 Galzki, Ki-In Kim, Mae Davenport, Bjorn Olson,
 Geoffrie Kramer
 - U.S. Geological Survey
 David Lorenz, Gary Martin, Dale Robertson, David Saad

Concerns about nitrogen in MN surface waters

Minnesota waters

Aquatic life toxicity

MPCA developing standards

Drinking water in streams

 15 streams exceed cold water standard of 10 mg/l

Downstream waters

Gulf of Mexico - hypoxia

Lake Winnipeg — algae blooms

Iowa Rivers — drinking water

Nitrate is dominant form in highnitrogen rivers

1976 to 2010 52 River Monitoring Sites

Nitrate Concentrations

Flow Adjusted QWTREND

- Increase
- Decrease
- No trend

Recent Trends 52 River Monitoring Sites

Nitrogen Sources

Cropland groundwater
Cropland tile drainage
Cropland runoff

Domestic wastewater Industrial wastewater Urban stormwater

Septic systems
Forests
Atmospheric
deposition
Barnyard
runoff

Sources to soils

Note: Do not equate with sources to waters

Cropland groundwater source/pathway

Cropland Tile Drainage Source

Nitrogen sources to surface waters - assessment methods

- Cropland field monitoring results extrapolated to larger scales with GIS
 - 3 pathways runoff, tile drainage, leaching to groundwater
 - Varied by soil, climate, crops, tile drainage, geology, fertilizer, manure
- Wastewater Point Sources NPDES permit records
- Urban runoff/leaching N yield coefficient based on urban/suburban subwatershed monitoring & literature
- Forest N yield coefficient based on literature review
- Atmospheric deposition CMAQ model
- Septic systems monitoring and literature reviews
 - Coefficients for groundwater and surface discharge
- Feedlot runoff MinnFARM model

Nitrogen yield to surface waters

Statewide nitrogen sources to surface waters

Nitrogen sources to surface waters

Nitrogen source differences between basins

Comparing cumulative source loads with

monitoring

Dry year

Ave. year

Wet year

SPARROW N sources similar to N source assessment

HSPF model nonpoint inorganic N sources - similar to N source assessment

Minnesota River Basin

Land use	HSPF	Project N source Assessment
Cropland	96.6%	97.6%
Urban stormwater	2.1%	0.7%
Barnyard runoff	0.19%	0.06%
Forest	0.14%	0.7%
Other	0.97%	0.94
Total	100%	100%

Reducing cropland nitrogen losses to surface waters statewide

In Conclusion

1

High nitrate in Southern Minnesota –
Particularly in areas dominated by row crops over either tile drainage or karst geology

2

Monitoring and modeling provide generally consistent picture of N sources and pathways.

Cropland N leaching to tile lines and groundwater contributes over 70% of Mississippi River N loads.

Nitrogen source assessment being used for:

- State level Nutrient Reduction Strategy
- Building models for watershed N reduction planning
- Communicating needs and priorities

Questions?

www.pca.state.mn.us/6fwc9hw